Skip to content

e2

This module contains functions to calculate the coefficients which are multipled with the orthonormal basis to make up the $e_2$ vector.

isotropic.e2

This module contains functions for generating the vector $e_2$.

F_j(theta_j, j, d)

Calculate the function $F_j$ for the given angle $\theta_j$ and index $j$ in dimension $d$.

Parameters:

Name Type Description Default
theta_j float

The angle at which to evaluate the function.

required
j int

The index corresponding to the angle.

required
d int

The dimension of the space.

required

Returns:

Type Description
Array

The value of the function $F_j$ evaluated at $\theta_j$.

Source code in src/isotropic/e2.py
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
def F_j(theta_j: float, j: int, d: int) -> Array:
    """
    Calculate the function $F_j$ for the given angle $\\theta_j$ and index $j$ in dimension $d$.

    Parameters
    ----------
    theta_j : float
        The angle at which to evaluate the function.
    j : int
        The index corresponding to the angle.
    d : int
        The dimension of the space.

    Returns
    -------
    Array
        The value of the function $F_j$ evaluated at $\\theta_j$.
    """
    dj = d - j
    numoverden = double_factorial_ratio_scipy(dj - 2, dj - 1)

    def F_odd(_):
        C_j = (1 / 2) * double_factorial_ratio_scipy(dj - 1, dj - 2)
        prefactor = C_j * numoverden
        k_max = (dj - 2) // 2  # upper bound for k in range
        k_vals = jnp.arange(0, k_max + 1)

        def product_term(k):
            num_factors = jnp.arange(dj - 2, 2 * k + 1, -2)
            den_factors = jnp.arange(dj - 1, 2 * k, -2)
            num_prod = jnp.prod(num_factors) if num_factors.size > 0 else 1.0
            den_prod = jnp.prod(den_factors) if den_factors.size > 0 else 1.0
            return (num_prod / den_prod) * jnp.sin(theta_j) ** (2 * k)

        # TODO: Use vectorization for better performance
        # sum_terms = jnp.sum(jnp.vectorize(product_term)(k_vals))
        sum_terms = 0.0
        for k in k_vals:
            sum_terms += product_term(k)
        return prefactor - C_j * jnp.cos(theta_j) * sum_terms

    def F_even(_):
        C_j = (1 / jnp.pi) * double_factorial_ratio_scipy(dj - 1, dj - 2)
        prefactor = C_j * numoverden * theta_j
        k_max = (dj - 1) // 2
        k_vals = jnp.arange(1, k_max + 1)

        def product_term(k):
            num_factors = jnp.arange(dj - 2, 2 * k, -2)
            den_factors = jnp.arange(dj - 1, 2 * k - 1, -2)
            num_prod = jnp.prod(num_factors) if num_factors.size > 0 else 1.0
            den_prod = jnp.prod(den_factors) if den_factors.size > 0 else 1.0
            return (num_prod / den_prod) * jnp.sin(theta_j) ** (2 * k - 1)

        # TODO: Use vectorization for better performance
        # sum_terms = jnp.sum(jnp.vectorize(product_term)(k_vals))
        sum_terms = 0.0
        for k in k_vals:
            sum_terms += product_term(k)
        return prefactor - C_j * jnp.cos(theta_j) * sum_terms

    # TODO: Use a conditional to choose between F_odd and F_even based on j
    # return lax.cond(j % 2 == 1, F_odd, F_even, operand=None)
    if j % 2 == 1:
        return F_odd(None)
    else:
        return F_even(None)

get_e2_coeffs(d, F_j, key=random.PRNGKey(0))

Generate the coefficients of the vector $e_2$.

Parameters:

Name Type Description Default
d int

Dimension of the space.

required
F_j Callable

Function to compute $F_j$ for the given angle, dimension and index.

required
key ArrayLike

Random key for reproducibility, by default random.PRNGKey(0).

PRNGKey(0)

Returns:

Type Description
Tuple[Array, Array]

A tuple containing:

  • theta: Array of angles used to construct $e_2$.
  • e2: Array representing the coefficients of the vector $e_2$.
Source code in src/isotropic/e2.py
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
def get_e2_coeffs(
    d: int, F_j: Callable, key: ArrayLike = random.PRNGKey(0)
) -> Tuple[Array, Array]:
    """
    Generate the coefficients of the vector $e_2$.

    Parameters
    ----------
    d : int
        Dimension of the space.
    F_j : Callable
        Function to compute $F_j$ for the given angle, dimension and index.
    key : ArrayLike, optional
        Random key for reproducibility, by default random.PRNGKey(0).

    Returns
    -------
    Tuple[Array, Array]
        A tuple containing:

        - theta: Array of angles used to construct $e_2$.
        - e2: Array representing the coefficients of the vector $e_2$.
    """
    theta: Array = jnp.zeros(d - 1)

    # Generate theta_{d-1} from a uniform distribution in [0, 2*pi]
    theta = theta.at[-1].set(random.uniform(key, shape=(), minval=0, maxval=2 * jnp.pi))

    # Generate theta_j for j = 1, ..., d-2 using bisection method
    # TODO: vectorize this loop
    for j in range(0, d - 2, 1):
        # JAX PRNG is stateless, so we need to split the key
        key, subkey = random.split(key)
        x = random.uniform(key, shape=(), minval=0, maxval=1)

        theta_j = get_theta(
            F=lambda theta: F_j(theta, j, d),
            a=0,
            b=jnp.pi,
            x=x,
            eps=1e-9,
        )

        theta = theta.at[j].set(theta_j)

    # e2 has dimension d
    e2: Array = jnp.ones(d)

    # e2[1] to e2[d-1] have products of sin(theta) terms
    # TODO: vectorize this loop
    for j in range(1, d):
        e2 = e2.at[j].set(e2[j - 1] * jnp.sin(theta[j - 1]))

    theta = jnp.append(theta, 0)  # Append 0 for cos(0) of last coordinate

    # e2[d] has additional cos(theta) term in product
    e2 = e2 * jnp.cos(theta)

    return theta, e2